Model Denitrification Decomposition (DNDC) Untuk Estimasi Emisi Gas Ch4 Pada Budidaya Padi Metode System of Rice Intensification (SRI)
Kata Kunci:
emisi CH4, model DNDC, padi, pupuk, system of rice intensificationAbstrak
Budidaya padi merupakan sumber emisi utama di sektor pertanian yang menyumbang gas rumahkaca terutama CH4. Upaya penurunan emisi gas CH4 pada penelitian ini dilakukan melalui pengintegrasian komponen teknologi antara varietas, pupuk dan irigasi berselang melalui metode budidaya System of Rice Intensification (SRI). Penelitian ini bertujuan untuk mengetahui pengaruh varietas dan pemupukan terhadap emisi gas CH4 selama satu musim tanam serta melakukan pemodelan pada emisi CH4. Model Denitrification-Decomposition (DNDC) digunakan karena dapat memprediksi emisi gas rumahkaca salah satunya CH4 dari ekosistem pertanian. Penelitian ini menggunakan Rancangan Nested Design dengan dua faktor perlakuan yaitu pemupukan yang terdiri dari pupuk kandang dan MOL (P1) serta pupuk kandang, ZA, SP36 dan KCl (P2), dan perlakuan varietas yaitu Ciherang (C) dan IR-64 (IR). Hasil observasi menunjukkan bahwa total emisi CH4 tertinggi yaitu pada perlakuan P1-IR sebesar 136,36 kg/ha/musim dan terendah yaitu perlakuan P2-IR sebesar 88,09 kg/ha/musim. Hasil simulasi menggunakan DNDC juga menunjukkan bahwa perlakuan P1-IR menghasilkan total emisi CH4 tertinggi sebesar 143 kg/ha/musim dan terendah yaitu perlakuan P2-IR sebesar 59 kg/ha/musim. Evaluasi model hasil observasi dan simulasi DNDC untuk rata-rata fluks CH4 harian dengan nilai R2 dan RMSE setiap perlakuan yaitu P1-C ; P1-IR ; P2-C dan P2-IR berturut-turut sebesar (R2 = 0.65 ; RMSE = 13.19) ; (R2 = 0.003 ; RMSE = 3.55) ; (R2 = 0.17 ; RMSE = 32.06) dan (R2 = 0.35 ; RMSE = 12.25). Hasil simulasi DNDC masih membutuhkan optimasi untuk estimasi emisi CH4 pada pemupukan dan varietas yang berbeda.
Referensi
Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., & Williams, M. (2010). Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmospheric Environment, 44(25), 2961–2970. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.05.018
Arif, C., Setiawan, B. I., Widodo, S., Sipil, T., Darmaga, K. I. P. B., Mesin, T., & Darmaga, K. I. P. B. (2015). Pengembangan Model Jaringan Saraf Tiruan Untuk Menduga Emisi Gas Rumah Kaca Dari Lahan Sawah Dengan Berbagai Rejim Air Development Of Artificial Neural Network To Predict Greenhouse Gas Emissions From Rice Fields With Different Water Regimes Oleh : 10(1), 1–10.
Aulakh, M. S., Bodenbender, J., Wassmann, R., & Rennenberg, H. (2000). Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems, 58(1–3), 367–375. https://doi.org/10.1023/A:1009839929441
Babu, Y. J., Li, C., Frolking, S., Nayak, D. R., & Adhya, T. K. (2006). Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutrient Cycling in Agroecosystems, 74(2), 157–174. https://doi.org/10.1007/s10705-005-6111-5
Balitbangtan. (2016). Varietas Rendah Emisi Gas Rumah Kaca.
BBPADI. (2019). BBPADI - Top 10 Varietas Padi Tahun 2018.
Cai, Z., Shan, Y., Xu, H., Cai, Z., Shan, Y., & Xu, H. (2013). Soil Science and Plant Nutrition Effects of nitrogen fertilization on CH 4 emissions from rice fields Effects of nitrogen fertilization on CH 4 emissions from rice fields. 0768. https://doi.org/10.1111/j.1747-0765.2007.00153.x
Denier Van Der Gon, H. A. C., & Neue, H. U. (1996). Oxidation of methane in the rhizosphere of rice plants. In Biology and Fertility of Soils (Vol. 22). https://doi.org/10.1007/BF00334584
Ferry Yunianti, I., Yulia ningrum, H., & Ariani, M. (2020). Pengaruh Pemberian Variasi Bahan Organik Terhadap Peningkatan Produksi Padi dan Penurunan Emisi Metana (CH4) di Lahan Sawah Tadah Hujan. Jurnal Ecolab, 14(2), 79–90. https://doi.org/10.20886/jklh.2020.14.2.79-90
Giltrap, D. L., Li, C., & Saggar, S. (2010). DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment, 136(3–4), 292–300. https://doi.org/10.1016/j.agee.2009.06.014
IRRI. (2020). International Rice Research Institute.https://doi.org/10.1017/s0266467400004065
Katayanagi, N., Fumoto, T., Hayano, M., Takata, Y., Kuwagata, T., Shirato, Y., … Yagi, K. (2016). Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Science of The Total Environment, 547, 429–440.https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.12.149
Kludze, H. K., DeLaune, R. D., & Patrick Jr., W. H. (1993). Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Science Society of America Journal, 57(2), 386–391. https://doi.org/https://doi.org/10.2136/sssaj1993.03615995005700020017x
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50. https://doi.org/https://doi.org/10.1016/S1164-5563(01)01067-6
Li, C., Frolking, S., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. Journal of Geophysical Research: Atmospheres, 97(D9), 9777–9783. https://doi.org/https://doi.org/10.1029/92JD00510
Rahmat, A., Arif, C., & Chadirin, Y. (2018). Estimasi Gas Rumah Kaca Pada Berbagai Macam Pengelolaan Air Menggunakan Model Denitrifikasi-Dekomposisi ( DNDC ) Greenhouse Gas Estimation In Various Water Management Using Denitrification-Decomposition Model ( DNDC ) Oleh : 11–20.
Rivera, A., Bravo, C., & Buob, G. (2017). Climate Change and Land Ice. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. https://doi.org/10.1002/9781118786352.wbieg0538
Schütz, H., Seiler, W., & Conrad, R. (1989). Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7(1), 33–53. https://doi.org/10.1007/BF00000896
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., … Towprayoon, S. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 118(1–4), 6–28. https://doi.org/10.1016/j.agee.2006.06.006
Stoop, W. A., Uphoff, N., & Kassam, A. (2002). A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agricultural Systems, 71(3), 249–274. https://doi.org/https://doi.org/10.1016/S0308-521X(01)00070-1
Sutton-Grier, A. E., & Megonigal, J. P. (2011). Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry, 43(2), 413–420. https://doi.org/10.1016/j.soilbio.2010.11.009
Tong, C., Wang, W. Q., Zeng, C. S., & Marrs, R. (2010). Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(4), 506–516. https://doi.org/10.1080/10934520903542261
Wang, Z. P., DeLaune, R. D., Masscheleyn, P. H., and Patrick, J. W. H. (1993). Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil. Soil Redox and PH Effects on Methane Production in a Flooded Rice Soil, 382–385.
Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE, 12(1), 1–23. https://doi.org/10.1371/journal.pone.0169254
Wang, Z., Delaune, R. D., Lindau, C. W., & Patrick, W. H. (1992). Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertilizer Research, 33(2), 115–121. https://doi.org/10.1007/BF01051166
Wihardjaka, A. (2015). Mitigation of Methane Emission Through Lowland Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., & Williams, M. (2010). Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmospheric Environment, 44(25), 2961–2970. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.05.018
Arif, C., Setiawan, B. I., Widodo, S., Sipil, T., Darmaga, K. I. P. B., Mesin, T., & Darmaga, K. I. P. B. (2015). Pengembangan Model Jaringan Saraf Tiruan Untuk Menduga Emisi Gas Rumah Kaca Dari Lahan Sawah Dengan Berbagai Rejim Air Development Of Artificial Neural Network To Predict Greenhouse Gas Emissions From Rice Fields With Different Water Regimes Oleh : 10(1), 1–10.
Aulakh, M. S., Bodenbender, J., Wassmann, R., & Rennenberg, H. (2000). Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems, 58(1–3), 367–375. https://doi.org/10.1023/A:1009839929441
Babu, Y. J., Li, C., Frolking, S., Nayak, D. R., & Adhya, T. K. (2006). Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutrient Cycling in Agroecosystems, 74(2), 157–174. https://doi.org/10.1007/s10705-005-6111-5
Balitbangtan. (2016). Varietas Rendah Emisi Gas Rumah Kaca.
BBPADI. (2019). BBPADI - Top 10 Varietas Padi Tahun 2018.
Cai, Z., Shan, Y., Xu, H., Cai, Z., Shan, Y., & Xu, H. (2013). Soil Science and Plant Nutrition Effects of nitrogen fertilization on CH 4 emissions from rice fields Effects of nitrogen fertilization on CH 4 emissions from rice fields. 0768. https://doi.org/10.1111/j.1747-0765.2007.00153.x
Denier Van Der Gon, H. A. C., & Neue, H. U. (1996). Oxidation of methane in the rhizosphere of rice plants. In Biology and Fertility of Soils (Vol. 22). https://doi.org/10.1007/BF00334584
Ferry Yunianti, I., Yulia ningrum, H., & Ariani, M. (2020). Pengaruh Pemberian Variasi Bahan Organik Terhadap Peningkatan Produksi Padi dan Penurunan Emisi Metana (CH4) di Lahan Sawah Tadah Hujan. Jurnal Ecolab, 14(2), 79–90. https://doi.org/10.20886/jklh.2020.14.2.79-90
Giltrap, D. L., Li, C., & Saggar, S. (2010). DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems and Environment, 136(3–4), 292–300. https://doi.org/10.1016/j.agee.2009.06.014
IRRI. (2020). International Rice Research Institute. https://doi.org/10.1017/s0266467400004065
Katayanagi, N., Fumoto, T., Hayano, M., Takata, Y., Kuwagata, T., Shirato, Y., … Yagi, K. (2016). Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Science of The Total Environment, 547, 429–440. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.12.149
Kludze, H. K., DeLaune, R. D., & Patrick Jr., W. H. (1993). Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Science Society of America Journal, 57(2), 386–391. https://doi.org/https://doi.org/10.2136/sssaj1993.03615995005700020017x
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50. https://doi.org/https://doi.org/10.1016/S1164-5563(01)01067-6
Li, C., Frolking, S., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. Journal of Geophysical Research: Atmospheres, 97(D9), 9777–9783. https://doi.org/https://doi.org/10.1029/92JD00510
Rahmat, A., Arif, C., & Chadirin, Y. (2018). Estimasi Gas Rumah Kaca Pada Berbagai Macam Pengelolaan Air Menggunakan Model Denitrifikasi-Dekomposisi ( DNDC ) Greenhouse Gas Estimation In Various Water Management Using Denitrification-Decomposition Model ( DNDC ) Oleh : 11–20.
Rivera, A., Bravo, C., & Buob, G. (2017). Climate Change and Land Ice. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. https://doi.org/10.1002/9781118786352.wbieg0538
Schütz, H., Seiler, W., & Conrad, R. (1989). Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 7(1), 33–53. https://doi.org/10.1007/BF00000896
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., … Towprayoon, S. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 118(1–4), 6–28. https://doi.org/10.1016/j.agee.2006.06.006
Stoop, W. A., Uphoff, N., & Kassam, A. (2002). A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource-poor farmers. Agricultural Systems, 71(3), 249–274. https://doi.org/https://doi.org/10.1016/S0308-521X(01)00070-1
Sutton-Grier, A. E., & Megonigal, J. P. (2011). Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry, 43(2), 413–420. https://doi.org/10.1016/j.soilbio.2010.11.009
Tong, C., Wang, W. Q., Zeng, C. S., & Marrs, R. (2010). Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(4), 506–516. https://doi.org/10.1080/10934520903542261
Wang, Z. P., DeLaune, R. D., Masscheleyn, P. H., and Patrick, J. W. H. (1993). Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil. Soil Redox and PH Effects on Methane Production in a Flooded Rice Soil, 382–385.
Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE, 12(1), 1–23. https://doi.org/10.1371/journal.pone.0169254
Wang, Z., Delaune, R. D., Lindau, C. W., & Patrick, W. H. (1992). Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fertilizer Research, 33(2), 115–121. https://doi.org/10.1007/BF01051166
Wihardjaka, A. (2015). Mitigation of Methane Emission Through Lowland Management. 34, 95–104.
Willmott, C. J. (1982). Some Comments on the Evaluation of Model Performance. 1309–1313.
Yang, N., Lü, F., He, P., & Shao, L. (2011). Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Applied Microbiology and Biotechnology, 92(5), 1073–1082. https://doi.org/10.1007/s00253-011-3389-x
Zhao, Z., Cao, L., Deng, J., Sha, Z., Chu, C., Zhou, D., … Lv, W. (2020). Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 178(November 2019), 102743. https://doi.org/10.1016/j.agsy.2019.102743
Zheng, X., Wang, M., Wang, Y., Shen, R., Li, J., Heyer, J., … Li, L. (2000). Mitigation Options for Methane, Nitrous Oxide and Nitric Oxide Emissions from Agricultural Ecosystems. Advances in Atmospheric Sciences, 17(1), 83–92. https://doi.org/10.1007/s00376-000-0045-2